数据分析的参考书集锦,先保存过来再说。
原文: http://bbs.pinggu.org/thread-3116701-1-1.html
入门读物:
深入浅出数据分析 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了 R 是大加分。难易程度:非常易。
啤酒与尿布 通过案例来说事情,而且是最经典的例子。难易程度:非常易。
数据之美 一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。难易程度:易。
数学之美 这本书非常棒啦,入门读起来很不错!
下载地址:深入浅出数据分析、啤酒与尿布、数据之美、数学之美。
数据分析:
SciPy and NumPy 这本书可以归类为数据分析书吧,因为 numpy 和 scipy 真的是非常强大啊。
Python for Data Analysis 作者是 Pandas 包的作者,看过他在 Scipy 会议上的演讲,实例非常强!
Bad Data Handbook 很好玩的书,作者的角度很不同。
下载地址:SciPy and NumPy、Python for Data Analysis、Bad Data Handbook
适合入门的教程:
集体智慧编程 学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的 Python 代码。难易程度:中。
Machine Learning in Action 用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有 Python 代码,大赞!目前中科院的王斌老师(微博: 王斌_ICTIR)已经翻译这本书了 机器学习实战 。这本书本身质量就很高,王老师的翻译质量也很高。难易程度:中。我带的研究生入门必看数目之一!
Building Machine Learning Systems with Python 虽然是英文的,但是由于写得很简单,比较理解,又有 Python 代码跟着,辅助理解。
数据挖掘导论 最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐 Jiawei Han 老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。难易程度:中上。
Machine Learning for Hackers 也是通过实例讲解机器学习算法,用 R 实现的,可以一边学习机器学习一边学习 R。
下载地址:集体智慧编程+源代码、Machine Learning in Action、Building Machine Learning Systems with Python、 数据挖掘导论、Machine Learning for Hackers
稍微专业些的:
Introduction to Semi-Supervised Learning 半监督学习必读必看的书。
Learning to Rank for Information Retrieval 微软亚院刘铁岩老师关于 LTR 的著作,啥都不说了,推荐!
Learning to Rank for Information Retrieval and Natural Language Processing 李航老师关于 LTR 的书,也是当时他在微软亚院时候的书,可见微软亚院对 LTR 的研究之深,贡献之大。
推荐系统实践 这本书不用说了,研究推荐系统必须要读的书,而且是第一本要读的书。
Graphical Models, Exponential Families, and Variational Inference 这个是 Jordan 老爷子和他的得意门徒 Martin J Wainwright 在 Foundation of Machine Learning Research 上的创刊号,可以免费下载,比较难懂,但是一旦读通了,graphical model 的相关内容就可以踏平了。
Natural Language Processing with Python NLP 经典,其实主要是讲 NLTK 这个包,但是啊,NLTK 这个包几乎涵盖了 NLP 的很多内容了啊!
下载地址:Introduction to Semi-Supervised Learning、Learning to Rank for Information Retrieval、 Learning to Rank for Information Retrieval and Natural Language Proces、推荐系统实践
机器学习教材:
The Elements of Statistical Learning 这本书有对应的中文版:统计学习基础 。书中配有 R 包,非常赞!可以参照着代码学习算法。
统计学习方法 李航老师的扛鼎之作,强烈推荐。难易程度:难。
Machine Learning 去年出版的新书,作者 Kevin Murrphy 教授是机器学习领域中年少有为的代表。这书是他的集大成之作,写完之后,就去 Google 了,产学研结合,没有比这个更好的了。
Machine Learning 这书和上面的书不是一本!这书叫:Machine Learning: An Algorithmic Perspective 之前做过我带的研究生教材,由于配有代码,所以理解起来比较容易。
Pattern Recognition And Machine Learning 经典中的经典。
Bayesian Reasoning and Machine Learning 看名字就知道了,彻彻底底的 Bayesian 学派的书,里面的内容非常多,有一张图将机器学习中设计算法的关系总结了一下,很棒。
Probabilistic Graphical Models 鸿篇巨制,这书谁要是读完了告诉我一声。
Convex Optimization 凸优化中最好的教材,没有之一了。课程也非常棒,Stephen 老师拿着纸一步一步推到,图一点一点画,太棒了。
下载地址:The Elements of Statistical Learning、统计学习方法、Machine Learning: An Algorithmic Perspective、
Pattern Recognition and Machine Learning+答案、Bayesian Reasoning and Machine Learning、 Probabilistic Graphical Models、Convexity and Optimization